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Abstract. We use the formalism of thermo field dynamics and the classic$ CramCr’s 
theorem to show that if two quantum systems are prepared independently and their 
centre of mass is found to be in a thermal squeezed state, then both systems were 
prepared in thermal squeezed states. This constitutes an alternative derivation of the 
quantum version of CramCr’s theorem. Further. we consider the case of two systems 
that are prepared independently and their centre of mass is in a pure state in the 
expanded space of thermo field dynamics. In this case we show that the system is 
also separable in the centre of mass and relative coordinates. and again all the stat- 
involved are thermal squeezed states. 

1. Introduction 

The analogue of classical behaviour in quantum systems is usually of great interest. 
Thus coherent states, ever since Schrodinger’s early work [I] and, later, Glauber’s 
work [2], have been characterized as being as near to classical states as quantum me- 
chanics allows. More than twenty yiars ago, Aharonov e l  Q /  (AFLP) [3] characterized a 
coherent state by a n  apparently different ‘classical’ requirement. They considered the 
indistinguishability of the radiation in two separate channels, whether it has been pro- 
duced by independent sources or by a single source whose output is divided between 
the channels. Classically these two possibilities cannot be distinguished. They proved 
that the unique quantum state for which there is no distinction between the two cases 
is the pure coherent state. More recently, new classical properties of quantum coherent 
states have been discussed by Emch and Hegerfeldt (EH) 141. Some of the relationships 
between their work and that of AFLP have been discussed in [5]. There the concept of 
thermal coherent state (TCS) was considered within the framework of thermo field dy- 
namics (TFD) [SI. In the present work we study a corresponding classical property of 
thermal squeezed states (TSS) [7]. (For a recent review of (zero-temperature) squeezed 
states, see, e.g., [ B ] .  For a discussion of possible representations of TSS and their physi- 
cal meaning, see, e.g., [9]. An experiment involving the squeezing of thermal radiation 
is described in [IO].) 

The particular classical property that we discuss is the following: if two quantum 
systems are prepared independently, and if their centre of mass (CM) is found to be 
in a TSS, then each of the component systems is also in a TSS. In fact, even if the 
centre of mass is found to  be in a TCS, each of the component systems will in general 
be in a TSS. In our proof we use only the classical version of Cramir’s theorem [ l l ] .  
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Alternatively, this constitutes a different proof of the quantum version of the classical 
Cram& theorem [4]. In the course of the proof it will be obvious that the term 'centre 
of mass' may really be replaced by any non-friuial linear combination of the variables 
of the two systems. The use of TFD allows a simple delineation of two physically 
distinct cases: one wherein the density matrix of the two systems can be factorized in 
both the individual systems' coordinates and in the systems' CM-relative coordinates, 
and the other where only the former factorization is possible (i.e. the systems are 
prepared independently but the CM and relative coordinates are not independent). 

The organization of the paper is as follows. In section 2 we discuss characteristic 
functions (CF) and the extension of Cramer's theorem t o  quantum systems. In section 
3 we consider the case where the CM of the two independent systems is known to be in 
a pure state in TFD. We show that  this suffices to determine that the density matrix 
of the whole system factorizes not only in the original particles' coordinates but also 
in the CM-relative coordinates, i.e. it is bifactorizable. Hence [12] all density matrices 
involved have the form of a general Gaussian in the coordinate representation. A 
general Gaussian density matrix yields a general Gaussian CF. It was pointed out in 
[7] and shown explicitly in [I31 that  a Gaussian CF is equivalent to a TSS. Henceforth 
we shall use the terms TSS and Gaussian density matrix interchangeably. The last 
section summarizes the results of this paper. 

2. Characteristic functions and CramBr's theorem 

The tools of our analysis in this paper are provided by TFD. Ample reviews of TFD 
are given in 16, 141. In  TFD, every degree of freedom is doubled: each original physical 

conjugation rules [6, 141. Thus the whole state vector space in TFD, 'HT,,, is a direct 
product of two state vector spaces, one for the physical, non-tilde operators, X, and 
the other for tilde ones, f i :  

operator h.. its own cnunter-partner, ca!!ed a tilde operator, .ccorcl_ing t" the ti!& 

XTFD = X 8 7-1. 

For a given state 17') in 'HTFDr the characteristic function (CF) is 

- 
where P and Q are momentum and coordinate operators, respectively, and P and Q 
are their tiide conjugates. The  iower-case ieiiers p >  9, 6 and rj siand for arbiirary reai 
c-numbers independent of each other. The CF in (2.2) specifies the state IT) up to a 
trivial overall phase factor. 

The observables associated with physical dynamical quantities are given by ex- 
pectation values of non-tilde operators in TFD. (Note, however, that when one tries 
to include also observable thermal effects, the expectation values of the cross-product 
or time and non-tiide operators appear as weii [is].) As iong as w e  are concerned 
with such physical dynamical quantities, we only have to deal with a particular CF, 
CF(p, $'>6 = 0, f = 0). 

Suppose now tha t  we are given in TFD a two-particle system with dynamical 
variables Pj, Q i ,  pi, Qi (i = 1 , 2 ) ,  We also assume that the two subsystems 1 and 2 

.. ... . 
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are prepared independently, which implies that the state of the total system defined 
in X,,, is factorized, i.e. 

IT) = lT1)ITz). (2.3) 

Let us define the centre-of-mass and relative variables as usual: 

P, = P, + Pz 

Qc = PIQI + ~ 2 Q z  

p, = PIP2 - P P I  

Qr = Qz - Qi 

and similarly for the tilde operators, where 

"i 

m1 +m2 
Pi = 

and mi ( i  = 1,2)  is the mass of the ith particle. Define also 

G ,=p iP i+q iQi  ( i =  1 , 2 , c , r ) .  

We then have the following identity: 

GI +G,  = G,+ G, 

where the relations among the c-numher parameters are given by 

Pc = PIP1 + PZPZ 

qc = 91 + 92 

P, = P2 - P, 

qr = Pi92 - Pz91 

(2.4) 

Similar relations apply to the tilde conjugates of equations (2.6). 
For the system described above, we consider asituation in which the CF is Gaussian 

with respect to the centre-of-mass physical variables while nothing is known about the 
relative coordinates, and ask what can we say about the states of 1 and 2. A similar 
question was raised in the context of the C*-algebra formalism by Emch and Hegerfeldt 
[4] who employed in their proofs a quantum version of Cramgr's theorem. However, 
we will see that it is sufficient to apply the original (classical) Cramer's theorem. 

Our assumption that the CF of the centre of mass is a Gaussian is tantamount to 
writing 
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where IT) and G, are defined in (2.3) and (2.6) and 

(. . .) = (TI , . . IT). (2.10) 

(Note that we have suppressed here the linear terms p,(P,), etc. These can he absorbed 
in a redefinition of the operators as deviations from their mean values, namely P, 
should be replaced by P, - (P,), etc.) cF, is a general Gaussian in p, and qc,  i.e. the 
CM state is a TSS. 

Let us introduce a new real variable, U ,  by the transformation 

Pi - "Pi 

Pi - "Pi 

(2.11) 

Then the condition imposed in the preceding paragraph leads to the form of CF, where 
G, should be replaced by uC,, 

cFc(u) = e--u'(G:)/Z, (2.12) 

On the other hand, when 

p P r I r  = q  = l j  = o  (2.13) 

equation (2.7) becomes 

u c ,  = u c ,  i U G ,  (2.14) 

so we have from (2.3) 

CFJU) = C F ~ ( U ) C F , ( U )  (2.15) 

with 

C F , ( ~ )  = ( ~ ~ e - i u G ~ ~ ~ . )  (i = 1 , ~ ) .  (2.16) 

Furthermore, we may use the following orthonormalized complete set {Igi)l$j)) (i, j = 
1 ,2 )  associated with the hermitian operators Ci and ei: 

Gilgi) = gilgi) 

(2.17) 

and similar equations for the tilde variables. Then equation (2.16) can be rewritten 
as 

CF~(U)  = dgi p,(gi)e-'"'' (2.18) J 



On classical properties of thermal squeezed stales 4531 

where 

Equations (2.12), (2.15) and (2.18) lead to 

where p, is defined by 

(2.21) 

I t  is easy to confirm the following properties of pi ( i  = 1,2, c): (a) pi is real and 
non-negative, 

P i b )  L 0 (2.22) 

and (b) pi is normalized, i.e. 

/ d g d g )  = 1. (2.23) 

Properties (a) and (b) ensure that pi (i = 1,2 ,c )  are probability distributions. So 
the classical Cramgr's theorem [l l]  is applicable to the present case: it states that  
i i  j2.20j is satisfied with pc defined by j i .2 i )  then cFi(uj ( i  = i , i j  must aiso be 
Gaussian distributions, i.e. 

C F i ( U )  = e - ~ 2 1 G w ~ .  (2.24) 

Therefore each C F ~  is Gaussian in p i ,  q i ,  which means that each IT) is a TSS. 
Summarizing ihis seciion, we have reached ihe couciusioir ihai  when iwu sysiems, 

1 and 2, are prepared independently and the CF of their centre-of-mass variables 
is Gaussian then each CF( (i = 1 , Z )  must be Gaussian. This result provides a n  
alternative proof of the quantum Cramer's theorem. We would like to note that we 
found it  very convenient to formulate the proof within TFD, but it could also be done 
within the usual formalism of quantum statistical mechanics. 

3. Separabili ty of the centre-of-mass and relative coordinates- 
bifactorizable func t ions  

Within the formalism of TFD one considers a mixed state (in the non-tilde, i.e. physical 
..-nc-l -e ~ - A..+.. :.. + L e  a....-- A . 4  Th... In 3.h;tr.,.r ,Ieme;+., m2tr;r -c 
y L " ' . r ,  .=-, o/ p " , G  U b L " I c :  111 Y l l r  mpa,,uru up'-=' I,."., U.. Y . Y . Y . Y . ,  Y...".", ..I Y Y L . *  &, Y, 

system 1 (in the physical space) can be expressed through a single wavefunction in 
the TFD space, i.e. 
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Relating this to the considerations in the previous section, we now study the following 
problem: given (i) that two particles 1 and 2 were prepared independently, i.e. 

P ( L 2 )  = P,(l)P,(2) (3.2) 

and (ii) their TFD CM state (obtained by tracing over the  relative coordinates in TFD 
space) is a pure state (in TFD space), what can we say about the states of particles 
1 and 27 Two points are worth mentioning before we proceed. First, here we do not 
require the CM to be a Gaussian, in contrast to the case in the previous section dealing 
with the quantum version of Cram& theorem; rather we require the CM to be in a 
pure state in the expanded space. This brings us  to the second point: a density matrix 
pertaining to the CM can always be represented as a pure state in the CM TFD space, 
but that  does not mean that tracing over the relative coordinates necessarily yields a 
pure state. In fact, the information that the tracing yields a pure state has physical 
meaning, as we shaii show. indeed, the two assumptions imply that the combined 
density matrix factorizes not only in the individual particles' coordinates but  also in 
the center-of-mass and relative coordinates, i.e. 

and, iurihermore, it ioiiows that aii the densiiy mairices invoived are Gaussian, i.e. 

(zlplz') = N exp(--az2 - a * d 2  + 2czz'+ bz + b'z')  (3.4) 

where I stands for any of the four coordinates 1, 2 ,  R, r, N is a normalization 
constant, and c is non-negative. For this case we obtain a stronger version of the 
resuii of ihe previous seciion, in as much as ihe Gaussian form was noi assumed h i ,  
rather, obtained. 

The validity of equation (3.3) follows from a theorem by von Neumann [16]. This 
theorem tells us that if we take the trace with respect to the relative coordinates 
of a two-particle density matrix and obtain a pure state density matrix for the CM, 
then the two-particle density matrix is a product of a pure state CM density matrix 

density matrix is 'pure' in the expanded space. This confirms equation (3.3), which 
implies that  the density matrix for the combined systems is factorizable both as single 
particle density matrices and in the CM and relative coordinates (cf equation (3.3)). 
Thus the density matrix for the whole system possesses the bifactorizability property 
[12]. In [12] i t  is shown (cf equations (20) and (21)) that  this implies that all density 

are common to all the four density matrices of equation (3.3). 
As was pointed out in the introduction, these states can be viewed as TSS. Hence 

the equality of the constants a and c may be interpreted physically as implying that 
all the states have a common temperature. This corresponds to corollary 3.5 of EH. 

.̂.-I " --I-&:..- ^^^_,I:-"*"" AA-":*.. -..L-:., 1" IL^ ------ & ^ ^ ^ ^  ,k- ' -..- ~ ",",.., ,-.I. 
*,,U 0. Lc.,*b,VC: LYYLuIIIa.LIc:) UF"J"J ' I I a b I I L .  ,I1 Y l l C  pL""c"L. L a c  IU.2 puts ULL1IIS U,", 

Elatrice8 iE.Jo!red are of ?he Ganssian form eq..a?ion (3.4), and the const.%nts n End c 

4. Summary 

In this paper we have dealt with two independently prepared particles and considered 
the following two cases: (1) tracing out the relative coordinates yields a pure state 
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density matrix (in TFD) for the centre of mass, and (2) tracing out the relative coori- 
nates does not yield a pure state (in TFD) for the CM; however, it is given, in analogy 
to the case considered by EH, that the physical part of the CM density matrix is a 
Gaussian (i.e. a TSS). In the first case we showed that the total system is also separa- 
ble in the CM and relative coordinates and that all four density matrices involved are 
thermal squeezed states. In the second case we showed that again the two particles 
were prepared in thermal squeezed states, thereby providing an alternative proof of 
the quantum version of Cramkr's theorem [4]. 
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